Sound calibration: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 1: | Line 1: | ||
==Introduction== | ==Introduction== | ||
% todo | % todo | ||
==Sensitivity of speakers== | |||
In all our labs we use the Cambridge Audio MINX MIN12 speaker. The speaker has | |||
{| class="wikitable" | |||
! LAB | |||
! Distance | |||
! Sensitivity | |||
! Calibration | |||
|- | |||
| TEST LAB | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| AUDITORY PERCEPTION LAB | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| AUDITORY SPHERE LAB | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| AUDITORY MOTION LAB | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| NIRS EEG LAB | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
|} | |||
==Sensitivity of headsets== | ==Sensitivity of headsets== |
Revision as of 12:01, 25 April 2025
Introduction
% todo
Sensitivity of speakers
In all our labs we use the Cambridge Audio MINX MIN12 speaker. The speaker has
LAB | Distance | Sensitivity | Calibration | |
---|---|---|---|---|
TEST LAB | ||||
AUDITORY PERCEPTION LAB | ||||
AUDITORY SPHERE LAB | ||||
AUDITORY MOTION LAB | ||||
NIRS EEG LAB |
Sensitivity of headsets
A commercial headset normally have a higher impedance than an audiological headset and therefore a higher sensitivity.
Table: impedances and sensitivity @ 1mW and @ 1V for Headphones measured @ 1 kHz
Model | Impedance (Ohm) | Sens@1mW (dB SPL) | Sens@1V (dB SPL) | Difference (dB) | Audiological |
---|---|---|---|---|---|
AKG_K271_MKII | 55 | 91 | 104 | 12.5 | N |
SENNHEISER_HD600 | 300 | (92) | 97 | 5.2 | N |
SENNHEISER_HD100 | 26 | (94) | 110 | 15.8 | N |
BEYERDYNAMIC_DT_770_PRO | 80 | 96 | (107) | 11.0 | N |
SENNHEISER_HDA280 | 37 | (103) | 117 | 14.3 | Y |
SENNHEISER_HDA300 | 23 | (108) | 124 | 16.4 | Y |
RADIOEAR_P4492 | 10 | (107) | 127 | 20 | Y |
TELEPHONICS_TDH-39P | 10 | (108) | 128 | 20 | Y |
- The numbers are from the specs on the internet.
- The numbers between brackets are calculated from the difference between the 1mW and 1V sensitivity by: Sens(1V) = Sens(1mW) + 10*log10(R/1000)