Difference between revisions of "Ripple Sounds"
Jump to navigation
Jump to search
Line 26: | Line 26: | ||
freq_modulation_cos = cos(2 * pi * ripples_per_octave * octaves); | freq_modulation_cos = cos(2 * pi * ripples_per_octave * octaves); | ||
− | % Mirror the frequency modulation components for | + | % Mirror the frequency modulation components for ifft compatibility |
mirrored_freq_mod_sin = [freq_modulation_sin, fliplr(freq_modulation_sin)]; | mirrored_freq_mod_sin = [freq_modulation_sin, fliplr(freq_modulation_sin)]; | ||
mirrored_freq_mod_cos = [freq_modulation_cos, fliplr(freq_modulation_cos)]; | mirrored_freq_mod_cos = [freq_modulation_cos, fliplr(freq_modulation_cos)]; |
Revision as of 10:22, 16 August 2024
Introduction
%todo
FFT-iFFT method
Below is an example of an implementation in matlab. It is based on a broadband signal consisting of pink noise. The input parameters are
- t = time domain array
- octaves = frequency domain array
- ripples_per_sec = the ripple velocity
- phi = a phase that can be added to the time modulation
- ripples_per_octave = the ripple density
- ripple_type = determines if the ripple is ascending or descending
- modulation_depth = half the amplitude of the modulation
% Generate array with pink noise pink_noise = pinknoise(n); % Create modulation functions for time domain (velocity modulation) time_modulation_sin = sin(2 * pi * ripples_per_sec * t + phi); time_modulation_cos = cos(2 * pi * ripples_per_sec * t + phi); % Create modulation functions for frequency domain (density modulation) freq_modulation_sin = sin(2 * pi * ripples_per_octave * octaves); freq_modulation_cos = cos(2 * pi * ripples_per_octave * octaves); % Mirror the frequency modulation components for ifft compatibility mirrored_freq_mod_sin = [freq_modulation_sin, fliplr(freq_modulation_sin)]; mirrored_freq_mod_cos = [freq_modulation_cos, fliplr(freq_modulation_cos)]; % Apply time modulation to pink noise in the time domain modulated_noise_sin_time = time_modulation_sin .* pink_noise; modulated_noise_cos_time = time_modulation_cos .* pink_noise; % Perform fft to get the signals in the frequency domain modulated_noise_sin_freq = fft(modulated_noise_sin_time); modulated_noise_cos_freq = fft(modulated_noise_cos_time); % Apply frequency modulation in the frequency domain rippled_noise_sin_freq = mirrored_freq_mod_sin .* modulated_noise_sin_freq; rippled_noise_cos_freq = mirrored_freq_mod_cos .* modulated_noise_cos_freq; % Perform ifft to get rippled noise in the time domain sin_rippled_noise = ifft(sin_rippled_noise_freq , 'symmetric'); cos_rippled_noise = ifft(cos_rippled_noise_freq , 'symmetric'); % Determine the ripple type (ascending vs. descending) switch ripple_type case 'ascending' combined_rippled_noise = sin_rippled_noise + cos_rippled_noise; case 'descending' combined_rippled_noise = sin_rippled_noise - cos_rippled_noise; end % Calculate the final rippled stimulus rippled_stimulus = pink_noise + modulation_depth * combined_rippled_noise;
N.B. when the density is zero 'rippled_noise' by itself has an envelope of a rectified sine wave (which has double the velocity). Only after adding the original noise the envelope is the correct one.
Band filter method
%todo