Ripple Sounds: Difference between revisions
Jump to navigation
Jump to search
| Line 2: | Line 2: | ||
%todo | %todo | ||
===FFT-iFFT method=== | ===FFT-iFFT method=== | ||
Below is an example of an implementation in matlab. It is based on a broadband signal consisting of pink noise. | Below is an example of an implementation in matlab. It is based on a broadband signal consisting of pink noise. | ||
The input parameters are | |||
*t = time domain array | |||
*octaves = frequency domain array, | |||
*ripples_per_sec = the ripple velocity | |||
*phi = a phase that can be added to the time modulation | |||
*ripples_per_octave = the ripple density | |||
*ripple_type = determines if the ripple is ascending or descending | |||
<pre> | <pre> | ||
% create array with pink noise | % create array with pink noise | ||
| Line 28: | Line 35: | ||
% determine the ripple type (ascending vs. Descending) | % determine the ripple type (ascending vs. Descending) | ||
switch | switch ripple_type | ||
case ascending | case ascending | ||
rippleStimulus = sin_modulated + cos_modulated; | rippleStimulus = sin_modulated + cos_modulated; | ||
Revision as of 08:30, 16 August 2024
Introduction
%todo
FFT-iFFT method
Below is an example of an implementation in matlab. It is based on a broadband signal consisting of pink noise. The input parameters are
- t = time domain array
- octaves = frequency domain array,
- ripples_per_sec = the ripple velocity
- phi = a phase that can be added to the time modulation
- ripples_per_octave = the ripple density
- ripple_type = determines if the ripple is ascending or descending
% create array with pink noise
noise = pinknoise(n);
% Create modulation for time domain
sin_modulation_t = sin(2 * pi * ripples_per_sec * t + phi);
cos_modulation_t = cos(2 * pi * ripples_per_sec * t + phi);
% Create modulation for frequency domain
sin_modulation_f = sin(2 * pi * ripples_per_octave * octaves);
cos_modulation_f = cos(2 * pi * ripples_per_octave * octaves);
% Mirror the modulation frequency components for ifft compatibility
sin_modulation_f = [sin_modulation_f, fliplr(sin_modulation_f)];
cos_modulation_f = [cos_modulation_f, fliplr(cos_modulation_f)];
% apply time modulation to noise, perform fft
fft_sin_mod_t = fft(sin_modulation_t .* noise);
fft_cos_mod_t = fft(cos_modulation_t .* noise);
%apply frequency modulation and perform ifft
sin_modulated = ifft(sin_modulation_f .* fft_sin_mod_t, 'symmetric');
cos_modulated = ifft(cos_modulation_f .* fft_cos_mod_t, 'symmetric');
% determine the ripple type (ascending vs. Descending)
switch ripple_type
case ascending
rippleStimulus = sin_modulated + cos_modulated;
case descending
rippleStimulus = sin_modulated - cos_modulated;
end
% calculate the modulated stimulus
rippleStimulus = noise + modulationDepth * rippleStimulus;
Band filter method
%todo